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Abstract— View factors or, equivalently, the direct interchange areas entering into Hottel’s zone method, are

computed numerically by procedures which give a fairly rapid solution. Some geometrical criteria are

formulated with a view to enabling a choice of the most favourable configuration concerning the emitter—

receptor radiative transfer. A number of examples for square, cubic, circular-cylinders and elliptical-cylinders
support the results and the validity of the criteria proposed.

NOMENCLATURE

A area of a surface zone [m?2]

B the side of a square zone [m]

E; the black emissive power of zone i
[Wm™2]

Jg the direct interchange area between a gas
zone and another gas zone [m?]

gs the direct interchange area between a gas
zone and a surface zone [m?]

k absorption factor of a volume zone [m™!]

L half length of a cylindrical zone [m]

Q thermal flux [W]

r space distance between two zones [m]

R radius in a circle or current radius to the
center in an ellipse [m]

5g direct interchange area between a surface
zone and a gas zone [m?2]

§s direct interchange area between a surface
zone and another surface zone [m?]
14 volume [m?]

Ax, Ay, Az cartesian space distance [m]
Z.Z; total interchange area between zone i and

zone j [m?].
Greek symbols
0 the angle between the direction of the

radiation and the normal to a zone
transmittance along a beam path r.

(1)

1. INTRODUCTION

THERE are some important chemical processes
(hydrocarbon pyrolysis, steam-cracking, hydrogen
cyanide synthesis and others) which use radiant
enclosures containing tubular reactors. The heat
absorbed by the tubular endotherm reactor (receptor)
proceeds from radiant walls and from combustion
gases (emitters). The temperature distribution and heat
fluxesin the enclosure are usually computed by the zone
method, due to Hottel and Sarofim [1]. The radiant
surfaces of receptors and emitters and the volume of
radiant gases are divided into a number of surface and
volume zones of convenient size. A most important
element in the computing scheme is the assessment of

view factors between the various zones. The view
factors multiplied by A for an emitting surface and by
4kV for an emitting gas volume give the direct
interchange areas. The total interchange area from an
emitter i to a receptor j, Z,Z ;, characterises the ratio of
theradiant energy emitted by zone Z; whichis absorbed
by zone Z;(directly or after multiple reflections), and of
the total hemispherical emissive power of zone Z;. A
total energy balance for all zones of a closed radiant:
system results in the following set of nonlinear
equations:

Y. ZZ\Ei— ZZTZ,)E,‘:Q,‘, k=12...,n (1)
i=1 j=1

where Q, represents the nonradiative heat flux leaving
zone k. The solution to the system of equations (1) leads
to the 3-dim. temperature field.

The general relationship given by Hottel and
Sarofim [ 1] for the net radiative flux between the black
zone 1 and the black zone 2,

Ol=2 = 51—3251 "Sz_lez, (2)

shows that the increase of the direct interchange areas
may be used for intensifying the thermal radiative
transfer. It is clear that the value of the direct
interchange area depends on the emitter-receptor
geometry. For a given system some criteria may be
formulated which enables a choice of the most
favourable geometry concerning the emitter—receptor
radiative transfer. It is the aim of the present paper to
propose such criteria and to estimate the influence of
the emitter-receptor geometry on the direct inter-
change areas.

2. ESTIMATION OF THE DIRECT
INTERCHANGE AREAS

The radiation emitted by one zone in a closed
radiative system containing a transparent medium is
entirely received by the other zones of the system. In
order to obtain the view factors the integration over
every beam directed towards the receptor is required.
The expressions for the direct interchange areas given
by Hottel and Sarofim [1] are
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and direct analytical integration seems difficult even for
asimple geometry. Hottel and Cohen [2] in some cases
use graphical methods. Other authors, for instance
Vercammen and Froment [3], Osuwan and Steward
[4], use the Monte Carlo method, while Gross et al. [5]
evaluate the integral by a series of additions of the
integrand which can be carried out numerically in a
simple way. Numerical methods involve more
computational time, but they are justified; in a given
closed system, the number of calculated integrals may
be decreased taking into account three principles
describedin[1]:reciprocity (5,5, = 535;),conservation
(3;515; = 4,), and the Yamauti principle.

In the equations (3)-(5), =(r) is the transmittance of
the medium traversed by the radiation and it depends
upon the beam length r and upon the absorption
coefficient of the medium, k. A simple relationship is
given by Hottel and Sarofim [1],

1(r) = exp <—J, k dr). (6)
0

Some details concerning the computation of the
transmittance are available [1-3].

The evaluation of direct interchange areas for a
number of characteristic cases, using various com-
parison criteria, is described below. In order to
simplify the interpretation of results, a transparent
medium (r = 1)isadopted as a first approximation, but
the present analysis can readily be extended to the
general situation where 7 is given by the full equation
(6). Figure 1 shows the results in their final form.

2.1. Cubic and square zones

For the radiative interchange between a surface
square zone and a gas cubic zone, the detailed
computational relations resulting from equations (3}~
(5) are given by Hottel and Cohen [2]. It should be
noticed that if the division of the space in the square
zone is adequate for obtaining the temperature field in
a radiant enclosure, it involves some geometrical
approximations for cylindrical receptors. For these
zones Simpson’s rule of integration was applied with
good results. The direct interchange area between
squares contained in parallel planes (Fig. 1, the first
example), calculated through this method is 0.199833,
in comparison to 0.2 as calculated by Hottel and
Sarofim [1].

2.2, Finite right-circular cylindrical zones

The numerical method of integration requires a
uniform division of directions of integration. For a
surface cylindrical zone (subscript 2) and a square zone
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F1G. 1. (A) Right-square prism (I, 2L) and parallel square ().
=1, L=0.5, Ax =1, 55 =0.199833. (B) (a) Right-circular
cylinder (R, 2L) and parallel square (f). The area of the cross-
section is constant and equalunit.f = 1,L =05,R = \/(I*/x)
= 0.5641.()Ax, = 1,55 = 0.1656;(ii)Ax,, = 1,55 = 0.3536.(b)
Right-circular cylinder (R, 2L) and parallel square (). The
perimeter of the cross-section is constant. I =1, L=05, R
= 4]/(2n) = 0.6366. (i) Ax, = 1, 55 = 0.1781; (ii) Ax, = 1, 55
= 0.4102. (C) (a) Right-circular cylinder (R, 2L) and parallel
square (I). The ‘view angle’ of the cross-section is constant. !
=1, L=05, a = arctan({/2). (i) R =0.8090, Ax, =1, 55
= 0.2038; (i) R = 0.4472, Ax, = 1, 55 = 0.2650. (b) Right-
circular cylinder (R, 2L) and parallel square (/). The ‘view
subtense’ of the cross-section isconstant and equal unit. { = 1,
L=05,c=1, R =05590. (i) Ax, = 1, 55 = 0.2454; (i) Ax,
=1, 55 = 0.3497. (D) Right-circular cylinder (R, 2L) and
parallel square (/). The ‘view arc’ of the cross-section is
constant and equal unit. I=1, L=05, R =180//2an
= 0.3885. (i) Ax, = 1, 55 = 0.2176; (ii) Ax, = 1, 55 = 0.1294.
(E) Right-circular cylinder (R, 2L) and parallel square ({). The
cylinder is inscribed in square prism (/, 2L). /=1, L= 0.5, R
=12 =05.())Ax, = 1,55 = 0.3045; (ii) Ax, = 1,55 = 0.1534.
(F) Right-circular cylinder (R, 2L) and parallel square (). The
cylinder is circumscribed insquare prism (I, 2L).1 = 1,L = 0.5,
R=1//2=0.707L () Ax, = 1, 55 = 04616; (i) Ax, = 1, 55
= 0.1893.(G)(a) Right-elliptical cylinder (a, b, 2L) and parallel
square (I). The area of the cross-section is constant and equal
unit.e = a/b,b = \/[*/(ne)], 1> = nab, L= 05,Ax = 1,1 = 1.
(i) e = 3.0,a = 0.9772,55 = 0.2196; (ii) e = 2.0,a = 0.7978, 55
= 0.2102;(ili) e = 1.5,2 = 0.6509,55 = 0.1947;(iv)e = 1.4,a
= 0.6675,55 = 0.1899;(v)e = 1.3,a = 0.6432, 55 = 0.1850.(b)
Right-elliptical cylinder (a, b, 2L) and parallel square (). The
perimeter of the cross-section is constant. e=a/b, b=
4l/[n(e+1)], 4l =n(a+b), L=05, Ax=1, I=1. (i) e=3.0,

“a=09549, 5 =02166; (i) e =20, a =0.8488, 55 =02178;

(iii) e = 1.5, a = 0.7639, 55 = 0.2068; (iv) e = 1.4, a = 0.7427,
55 =0.2026; (v) e = 1.3, a = 0.7196, 55 = 0.1981. (c) Right-
elliptical cylinder (a, b, 2L) and parallel square (J). The ‘view
subtense’ of the cross-section is constant and equal unit. e
=afb, c=1, L=0.5, Ax,=1, I=1. (i) e=3.00, a=0.5065, 55
= 0.1821;(ii) e = 2.77, a = 0.5081, 55 = 0.1892; (iii) e = 2.54,
a = 0.5096, 55 = 0.1970. (d) Right-elliptical cylinder (a, b, 2L)
and parallel square (/). The ‘view arc’ of the cross-section is
constant and equal unit.e = a/b, L=0.5,Ax = I,l=1.(i) e
= 3.00, a = 0.5041, 55 = 0.1488; (ii) e = 2.54, = 0.4832, 55
= 0.1515;(iii) e = 2.08,a = 0.4623,55 = 0.1514;(iv) e = 1.85,
a = 0.4494,55 = 0.1475;(v) e = 1.62,a = 0.4342, 55 = 0.1389.
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F1G. 2. A right-circular cylinder and a parallel or perpendicular square.

(subscript 1), at a space distance (Ax, Ay, Az) between
their symmetry centers, the terms of equation (3)
become (with the notation of Fig. 2)

d4, = (dy)(d2), ()
d4, = R(dp)(@l), )
cos 0, = (Ax—R sin f)/r, (9)

cos 0, = (d cos f—RY/g/[1+(Ay—1)*/g*1'"2. (10)

For a square the integral (3) is performed over the
directions y and z and for a cylinder over the length [
and the angle at center . Let n be the number of the
currentstep upon thedirections of integration ; then the
terms which appear in equations (7)-(10) are

B =1-PBu+n(Ap),
}= — L+n(Al),
d = [(Ax)*+(A2)*]'7,
q¢* = R2+d>—2Rd cos §,
ii = 180° —arcsin (Ax/d)— By +n(Af),
= (Ay—I)? +(Ax—R sin 1) +(Az+ R cos @)%

The subscript M designates the maximum value of
angle B, corresponding to the tangent at the cylinder.

The direct interchange area 55 for a cylinder—parallel
square system is

ﬂ\l
Ss(parallel) -
~B/2J-8/2,)-L -ﬁu

7, R(d cos B~ R)(Ax—R sin 1)
nriq[1+(Ay—D?/q*]"?
x (dy)d2)@h@p ()
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and for a perpendicular arrangement
B2 (B2 L (fum
S_S(perpendicular) = j J‘ '[ '[ .
—B/2J-B/2J-LJ-§u
_% R(Ay—1(d cos B—R)
nrqll+(Ay— /12
x (dx)(d2)(dD(dp). (12)

For two parallel right-circular cylinders, with the
notations in Fig. 3, equation (3) becomes

Bu, B,
Ss(parallel) =
~bsy J = Pu,

% e_;,Rle [‘71 €OS ﬁz_Rz]

ar? u?

% { (g, cos ﬁx—Rx)
[+ Ay -1, —1)*/p?]

where

}(dll)(dlz)(dﬁl)(dBZ) (13)

1 = R}+q3—2R,q; cos i,
r? = (Ay—1,—L)*+(Ax—R, sin ti;— R, sin 1i,)?
+(Az+R, cos ti;+ R, cos 1)

The case of radiative interchange between a surface
right-circular cylindrical zone and a gas cubic zone
yields

J‘B/z J*B/Z j~3/2 Jw_ '[im
g5 = )
-Bi2J-B2Jd-B2J-LJ-fu

« [ o Rl cos f—R)dx)(dy)(d2)(dN(dB)

arig[(1+(Ay—1)*/q*]'?
(14)
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Fi1G. 3. Two parallel right-circular cylinders.

2.3. Finite right-elliptical cylindrical zones

This is a generalization of the above case for surface
cylindrical zones. The direct interchange areas are
calculated using a numerical technique and some
elementary geometrical properties in order to simplify
the computational procedure. Let us consider an
infinitesimal external emitter located at a space
distance (Ax, Ay, Az) from the symmetry center of the
elliptical cylinder. First, in order to find the limits of
integration, it is important to define the position of the
tangents from this emitter point to the elliptical cross-
section, which includes the emitter inits plane. In Fig. 4,
the definition is given either by the angle at the center of
theellipse, 1y, or by the distance to thefocus, x,only one
of the two definitions being necessary. The numerical
procedure to find x starts with some proposed values
comprised between the limiting values (a—c, 2a—¢),
and verifies whether a stop-condition is satisfied. The
half-interval search is used. The stop-condition from
which one obtains x is

F(x)—(2c)* =0

N2 A
N d

A

L
S

AX

FTlaz

F1G. 4. The tangent from an external emitter point M to an
ellipse. (The notation is used in equations (15+20) and in
Appendix 1.)

where
F(x) = Qa—x)*+x2—~2x(2a—x)cos ¢

and the angle 7 is computed as described in Appendix 1.
The next step after the definition of the tangents is the
estimation of the angle i, and of the radius Ry, using
Stewart’s theorem (sce Fig. 4)

R =2a*+x*—2ax—c?, (15)
2 Rl —(2a— 2
il = arccos [%] (16)

If 4y, and 4y, are the angles which define the two
tangents from the emitter to the ellipse, the angle fy,
results as

ﬁm = ([thy, — 1, ))/2.

Integrating equations (3)5) leadsAafter n steps Aff to
the current values of the angles i, f and of x and R

U= Uy, +n(Ap),
B = =By +n(Ap),
R = (2a* +x*—2ax—c?)'?
where x is a solution to the equation
f(x) = a®—ax—c(2a®+x*—2ax—c?*)? cos i1 = 0.

The radiating beam between the differential surface
elements makes an angle § with the normal to the
surface element of the ellipse dA; the term cos 0 is
contained in equations (3) and (4), and it is computed as
in Appendix 2 (sce the notations on Fig. 5),

cos 0 = cos Oy/[1+(Ay—D*/q*1"2.

For an ellipse, the elliptical arc df is approximated by

(17)
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F1G. 5. Estimation of the term cos 0 for an elliptical cylinder.
{The notation is used in equation {17} and in Appendix 2.)

that of a circle, so that the surface element of the ellipse
is

dA4 =~ R(dp)d)). (18)

Finally, the direct interchange area 55 between an
elliptical cylindrical surface and a parallel square, as
shown in Fig. 6, is calculated by means of the
relationship

B2 (B2 L (hwm
SS(parallely = J‘ J J‘ J R
—-B/2J—-B/12J-LJ-8xm

(Ax—R sin ®)R cos 0

xe kM 3

nr
x (dy)d2)dh@p) (19)

and for the case of their perpendicular arrangement

Bj2 (B2 (L (fu
Ss(perpcndicular) = .
—=B/12J—B12J—LJ -8

2 @y_—z_r’i“’_so (dx)(dz)(dl)dp). (20)

® Rmax
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The procedure to compute the integrals needed in the
evaluation of direct interchange areas can be easily
extended to other cases, such as: parallel or
perpendicular elliptical cylinders, parallel or per-
pendicular elliptical and circular cylinders, elliptical
cylinders and cubes, a.s.o.

3. RESULTS AND DISCUSSIONS

Themultipleintegrals which appearinequations (3)-
(S)arecalculated using Simpson’s rule. A compromise is
looked after between the precision of the integrals,
which increases with the number of integration steps,
and the computation time.

The comparison of direct interchange areas 55, is
done for the following cases of the emitter-receptor
geometrical configurations: square-square prism,
square-finite right-circular cylinder, squarefinite
right-elliptical cylinder, all in parallel space arrange-
ment. The surface considered for the radiative
interchange is located at the boundary of the prism or
cylinder.

In order to simplify the calculation and the
interpretation of results the following assumptions are
adopted: (i) the space distance between zones
(Ax, Ay,Az)is(1,0,0); (ii) the side of the square B or the
length of the prism or of the cylinder 2L is equal to one;
(iii) the gaseous medium is transparent.

The values of the integrals computed usingequations
(3){5) and shown in Fig. 1, reveal some possible
geometrical criteria of comparison with respect to the
performance of a given emitter-receptor shape. We
only formulate some criteria for the prism and for the
cylindérs : the area or the perimeter of the cross-section
isconstant ;thecylinder isinscribed or circumscribed in
the prism; the ‘view subtense’ or the view arc of the
cross-section is constant and equal with the side of
square cross-section of the prism ; the view angle of the
cross-sectionisconstant. In the above cases, reference is

FIG. 6. A right-elliptical cylinder and a parallel or perpendicular square.
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made respectively to the symmetry centers of the zones.
The most adequate criterion for comparison in
practical situations seems to be the constant view arc.
The value of the integral 55 for squarc—finite right-
elliptical cylinder is intermediate between the values of
square-right-square prism system and those of square—
right-circular cylinder system, and is as much closer to
the value of the circular cylinder as the semiaxis ratio of
the elliptical cross-section is closer to one.

Therefore an elliptical shape of the tubular receptor
may be favourable for the outside radiative heat
transfer, but also for the inner heat transfer. Oliver and
Karim[6]reporta better arithmeticmean heat transfer
coefficient for elliptical tubes. The improvement of the
radiative or nonradiative transfer for elliptical tubes
may be used for instance for the pyrolysis of
hydrocarbons.

The procedure to estimate shape factors or,
equivalently, the direct interchange areas, as described
above, may be successfully applied to a solar receiver
computation, for instance to the problem of Gross et al.
[5]. The computational procedure, described in
Section 2, which joins the well-known geometrical
formulas and the numerical computational techniques,
may give a more rapid solution to such problems and
may be used for an optimal design of radiant enclosures.
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APPENDIX 1
THE COMPUTATION OF THE ANGLE ¢

Using the notations in Fig. 4, the angle 7 is computed as
follows:

d* = (Ax) +(Az)%,
¢ =a*-b?,
h? = (Ax)*+(Az—c)?,
B = arccos [(c2 —a® +ax)/(cx)].
é = arctg[Ax/(Az —c)],
3 =180°=f—¢,
A% = x2+h*—2xh|cos §l,
& = arccos [(x2+ A2 —h?)/(2x2)],
i = 180°—~24.
Inthe aboveformulas, the generalized Pitagora’s theorem and
a classical property of the tangents at an ellipse, described for
instance by Dingeldey [7] are used. The case presented here is

Az > a;in other cases, the signs in the relationship of angle §
must be changed.

APPENDIX 2

THE COMPUTATION OF TERM cos §
OF EQUATIONS (3)-(5) FOR AN
ELLIPTICAL CYLINDER

The angle § for an elliptical cylinder is defined in Section 2.
To compute it, we use the notations in Fig. 5, the generalised
Pitagora’s theorem and Apollonius’ property for an ellipse.
Apollonius’ property, given for instance by Dingeldey [7],
specifies that the circle of radius 2a with the centerin one of the
foci of an ellipse, contains the symmetrical point of the other
focus with respect to the tangent at the ellipse. So, the
successive computational relationships are

2 =b%x/(2a—x),
q* = R2+d*—2Rd cos J,
t = arccos [(f 2 +c2—a?)/(2fc)] - 907,
GO = c—(x2—f)"?/cos i,
d? = GO?+d?—2G0d|cos By +tiy)l,
GM = f+(x>*—f}) tan {,
d?—q*—GM?
2qGM
cos 0 = cos Oy/[1 +(Ay—D*/q*]V>.

cos Oy =

INFLUENCE DE LA CONFIGURATION GEOMETRIQUE EMETTEUR-RECEPTEUR SUR
LE TRANSFERT THERMIQUE PAR RAYONNEMENT

Résumé—Les facteurs géomeétriques ou les aires d’interéhange direct entrant dans la méthode de zone de
Hottel sont calculés numériquement par des procédures qui donnent une solution trés rapide. Quelques
critéres géométriques sont formulés en vue de permettre un choix de la configuration la plus favorable
concernant le transfert radiatif entre émetteur et récepteur. Un nombre d'exemples pour carré, cube, cylindre
circulaire et cylindre elliptique apporte des résultats et justifie la validité des critéres proposés.
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DER EINFLUSS DER GEOMETRIE DES STRAHLERS UND EMPFANGERS AUF DEN
STRAHLUNGSAUSTAUSCH

Zusammenfassung— Es wurden die Strahlungsformfaktoren mit numerischen Methoden berechnet, die sehr

schnell konvergieren. Die Faktoren sind gleichbedeutend mit den direkten Austauschflachen, welche in die

Zonenmethode nach Hottel eingehen. Im Hinblick auf die Auswahl der besten Anordnung fiir den

Strahlungsaustausch zwischen Strahler und Empfinger werden einige geometrische Kriterien formuliert. Die

Ergebnisse werden durch mehrere Beispicle fiir Quadrate, Wiirfel, Kreis, Zylinder und elliptischen Zylinder
erginzt und die Giiltigkeit der angegebenen Kriterien nachgewiesen.

BJIMAHUE B3AMMHOIO PACITOJIOXEHHS HCTOUYHUKA U IMPHEMHHKA
H3JTYYEHUSA HA JIYUUCTBIN TEMJOMNEPEHOC

Annotams—Ko3pduunenTs OGAYYeHHOCTH, WIH OKBHBAAGHTHbIE MM MUIOWAAM [0OBEpXHOCTEIl
B33aHMHOI'O JIyYHCTOrO OOMEHa, HCHOIB3yeMble B 30HANBHOM MeTode XOTTeNs, pacCYHTHIBAIOTCA
YHCICHHO HAa OCHOBE NMPOCTOI METOAMKH, KOTOPAsA NO3BOISET A0BOABHO OBICTPO MOAY4aTh PELUCHHA.
ChopMyaHpPOBaHB! HEKOTOPHIE FEOMETPHYECKHE KPHTEPHH BhIGOpa Hanbosiee pauHOHAIBLHOIO B3AHMHOTO
PacnosioKeHHs HCTOYHHKA M IPHEMHHKA H3JIyueHus 14 IydHcTOro Tennonepesoca. Ha paae npumepos
KBaApaTHOM, KkyOH4eckofl, KO:IbUEBON-UILTHHAPHYECKOH §  SIHNTHYECKO-UHIHHAPHYECKOH KOH-
¢urypauuii noxaszana TOYHOCTb PE3yNbTATOB H CNPABEATHBOCTb NPELTOKEHHBIX KPHTEPHEB.
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